a2 United States Patent

Sauerwald et al.

US009401898B2

(10) Patent No.: US 9,401,898 B2
(45) Date of Patent: Jul. 26, 2016

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(62)

(1)

(52)

SYSTEM AND METHOD FOR WIRELESS
DATA PROTECTION

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Apple Inc., Cupertino, CA (US)

Conrad Sauerwald, Mountain View, CA
(US); Vrajesh Rajesh Bhavsar,
Sunnyvale, CA (US); Kenneth Buffalo
McNeil, San Jose, CA (US); Thomas
Brogan Duffy, San Francisco, CA (US);
Michael Lambertus Hubertus
Brouwer, San Jose, CA (US); Matthew
John Byom, San Jose, CA (US);
Mitchell David Adler, Cupertino, CA
(US); Eric Brandon Tamura, Mountain
View, CA (US)

Apple Inc., Cupertino, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

14/874,360

Oct. 2, 2015

Prior Publication Data

US 2016/0036791 Al Feb. 4, 2016

Related U.S. Application Data

Division of application No. 13/204,171, filed on Aug.
5, 2011, now abandoned.

Int. Cl.

HO4L 9/00 (2006.01)

HO4L 29/06 (2006.01)

Ho4L 9/08 (2006.01)

GO6F 11/14 (2006.01)

(Continued)
U.S. CL
CPC ... HO4L 63/0435 (2013.01); GO6F 11/1464

(2013.01); HO4L 9/0822 (2013.01); HO4L

9/0825 (2013.01); HO4L 9/0863 (2013.01);
HO04L 9/0894 (2013.01); HO4L 63/061
(2013.01); HO4W 12/04 (2013.01); HO4W
12/08 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,870,477 A 2/1999 Sasakietal. 713/165

5,982,891 A 11/1999 Ginter et al.
6,134,660 A 10/2000 Boneh et al.

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2006-526851 A 11/2006
Jp 2008-042718 A 2/2008
(Continued)

Primary Examiner — Michael R Vaughan
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Disclosed herein are systems, methods, and non-transitory
computer-readable storage media for wireless data protection
utilizing cryptographic key management on a primary device
and a backup device. A system encrypts a file with a file key
and encrypts the file key twice, resulting in two encrypted file
keys. The system encrypts each file key differently and stores
a first file key on the primary device and transmits one of the
encrypted file keys in addition to the encrypted file to a
backup device for storage. On the backup device, the system
associates the encrypted file key with a set of backup keys
protected by a user password. In one embodiment, the system
generates an initialization vector for use in cryptographic
operations based on a file key. In another embodiment, the
system manages cryptographic keys on a backup device dur-
ing a user password change.

27 Claims, 16 Drawing Sheets

US 9,401,898 B2

Page 2
(51) Int.ClL 2007/0100913 Al 5/2007 Sumner etal. 707/204
2008/0040613 Al 2/2008 Challener
Ho4W 12/04 (2009.01) 2008/0063209 Al 3/2008 Jaquette etal. 380/284
HO04W 12/08 (2009.01) 2009/0220087 Al 9/2009 Brusilovsky et al.
2011/0055559 Al 3/2011 Lietal.
(56) References Cited 2011/0252232 Al 10/2011 DeAtleyetal. 713/165
2011/0252233 Al 10/2011 De Atley et al. 713/165
U.S. PATENT DOCUMENTS 2011/0252234 Al 10/2011 De Atley etal. 713/165
2011/0252243 Al 10/2011 Brouwer et al. 713/189
6,389,535 Bl 5/2002 Thomlinson et al.
7,240,219 B2 7/2007 Teicheretal. 713/193 FOREIGN PATENT DOCUMENTS
8,412,934 B2 4/2013 De Atley et al. ... 713/165
8,433,901 B2 4/2013 De Atley et al. ... 713/165 Jp 2009-512077 A 3/2009
8,510,552 B2 8/2013 De Atley et al. ... 713/165 Jp 2010-539856 A 12/2010
8,589,680 B2 11/2013 DeAtley etal. 713/165 WO WO 2010/126638 A2 11/2010
2004/0091114 Al 5/2004 Carteretal. 380/259 WO WO 2010/126638 A3 11/2010
2004/0236958 Al 11/2004 Teicher et al. WO WO 2011/031439 Al 3/2011

US 9,401,898 B2

Sheet 1 of 16

Jul. 26, 2016

U.S. Patent

07} <1 H0SSI0Md [=—={ IHOVD |—1Tl
1 | oveamr |
Oh_ Ok
A y
A J | A 3 | 4
Sne 1L 3omw
‘ A ‘ Indino oLl
79} — 7 G0N w , w - gy %
29— LOoK]| o o7} 05l /
39IA30
uosmem 001 I 5L
09

U.S. Patent Jul. 26, 2016 Sheet 2 of 16 US 9,401,898 B2

FIG. 2

ASYMMETRIC KEY CRYPTOGRAPHY
SENDER 230 |

240 RECEIVER
S I \
UNENCRYPTED ENCRYPTION |__| ENCRYPTED | _| ENCRYPTION | | UNENCRYPTED

MESSAGE

| ALGORITHM

210 ;

MESSAGE ALGORITHM

220

MESSAGE

RECEIVER’S RECEIVER’S
PUBLIC KEY PRIVATE KEY
FIG. 3
SYMMETRIC KEY CRYPTOGRAPHY :
SENDER : RECEIVER
UNENCRYPTED | _| ENCRYPTION |[__| ENCRYPTED | _| ENCRYPTION | || UNENCRYPTED

MESSAGE

ALGORITHM

MESSAGE

ALGORITHM

MESSAGE

T

|

310

SYMMETRIC KEY

30— ==

SYMMETRIC KEY

U.S. Patent

Jul. 26, 2016

410

Sheet 3 of 16

CBC MODE ENCRYPTION

FIG. 4
420

S

b, 440

s_‘C_;B
IV

by

—

t_____

KEY —»

US 9,401,898 B2

b

—

ENCRYPT

/

b

KEY —=

ENCRYPT ENCRYPT
FIG. 5
ECB MODE ENCRYPTION
510
S
by b,
/ Y
ENCRYPT KEY —={ ENCRYPT
/ |
Cby L~520 Cb,

U.S. Patent Jul. 26, 2016 Sheet 4 of 16 US 9,401,898 B2

FIG. 6

START

ENCRYPTS A FILE WITH A FILE KEY | _~ 10
70 YIELD AN ENCRYPTED FILE

i
ENCRYPTS THE FILE KEY WITH A
CLASS ENCRYPTION KEY TO YIELD |~ 620

AN ENCRYPTED FILE KEY

r
ENCRYPTS THE FILE KEY WITH A
PUBLIC KEY ASSOCIATED WITH A 630
SET OF BACKUP KEYS TO YIELD A
SECOND ENCRYPTED FILE KEY

/
TRANSMITS THE ENCRYPTED FILE
AND THE SECOND ENCRYPTED FILE [~ 640

KEY TO A BACKUP DEVICE

|

US 9,401,898 B2

Sheet 5 of 16

Jul. 26, 2016

U.S. Patent

Y 1] J g)
G A ¥ A ¢ AN ¢ A b AN
)| ¥ AN ¢ A ¢ AP } A
¥ SSY10 a SSYn J SSY10 g SSY10 ¥ SSY10
¢ Il ¥ 1M ¢ 114 ¢ 314) 3114
WN31SASIA
. B

~00L

~0lL

U.S. Patent

Jul. 26, 2016 Sheet 6 of 16

FIG. §

RECEIVES AN ENCRYPTED FILE AND
AN ENCRYPTED FILE KEY AT A
BACKUP DEVICE

810

/

ASSOCIATES THE ENCRYPTED FILE
KEY WITH A SET OF BACKUP KEYS

- 820

)

ENCRYPTS THE SET OF BACKUP
KEYS WITH A BACKUP KEY SET
KEY TO YIELD AN ENCRYPTED SET
OF BACKUP KEYS

— 830

|

STORES THE ENCRYPTED FILE, THE

ENCRYPTED FILE KEY AND THE SET

OF ENCRYPTED BACKUP KEYS ON
THE BACKUP DEVICE

—— 840

!

US 9,401,898 B2

U.S. Patent Jul. 26, 2016 Sheet 7 of 16 US 9,401,898 B2

HRHRE
4] 15 (6]
ARERE
*] 0 #

U.S. Patent Jul. 26, 2016 Sheet 8 of 16 US 9,401,898 B2

FIG. 10

U.S. Patent Jul. 26, 2016 Sheet 9 of 16 US 9,401,898 B2

1110
(: o kb/

RECOVERABLE UNRECOVERABLE
1120 __ RANDOM SECRET USER PROVIDES SEPARATE | __ 445
GENERATED BY DEVICE BACKUP PASSWORD
1130 A SERVER ESCROWS BACKUP PASSWORD IS
RANDOM SECRET USED TO GENERATE A [— 1160
BACKUP KEY SET KEY

SERVER PROTECTS
1140~ SECRET WITH USER
ACCOUNT PASSWORD

FIG. 11

U.S. Patent Jul. 26, 2016 Sheet 10 of 16 US 9,401,898 B2

FIG. 12

START

TRANSMITS ENCRYPTED FILE DATA,
AN ENCRYPTED FILE KEY AND A | 1200
SET OF ENCRYPTED BACKUP KEYS,
FROM THE BACKUP DEVICE TO THE
PRIMARY DEVICE, WHEREIN THE SET
OF ENCRYPTED BACKUP KEYS IS
GENERATED ACCORDING TO STEPS
COMPRISING:

]

RECEIVES AN ENCRYPTED FILE

AND AN ENCRYPTED FILE KEY AT A
BACKUP DEVICE

~ 1210

i
ASSOCIATES THE ENCRYPTED FILE |_~ 499
KEY WITH A SET OF BACKUP KEYS

i
ENCRYPTS THE SET OF BACKUP
KEYS WITH A BACKUP KEY SET | 1230

KEY TO YIELD AN ENCRYPTED SET

OF BACKUP KEYS

FINISH

U.S. Patent

Jul. 26, 2016 Sheet 11 of 16

FIG. 13

START

RECEIVES ENCRYPTED FILE DATA,

AN ENCRYPTED FILE KEY AND A

SET OF ENCRYPTED BACKUP KEYS,
AT THE PRIMARY DEVICE

— 1310

i

DECRYPTS THE SET OF ENCRYPTED
BACKUP KEYS WITH A BACKUP KEY
SET KEY TO YIELD A SET OF
BACKUP KEYS

— 1320

i

DECRYPTS THE ENCRYPTED FILE
KEY WITH A BACKUP KEY TO YIELD
A FILE KEY

— 1330

J

DECRYPTS THE ENCRYPTED FILE
DATA WITH THE FILE KEY TO YIELD
FILE DATA

~ 1340

i

STORES THE FILE DATA ON THE
PRIMARY DEVICE

-~ 1350

(_FINISH)

US 9,401,898 B2

U.S. Patent

Jul. 26, 2016 Sheet 12 0f 16

FIG. 14

START

HASHES A FIRST ENCRYPTION KEY
TO YIELD A FIRST INTERMEDIATE
RESULT

~ 1410

J

TRUNCATES THE FIRST
INTERMEDIATE RESULT TO YIELD A
SECOND INTERMEDIATE RESULT

— 1420

\

GENERATES A THIRD INTERMEDIATE
RESULT UTILIZING A FUNCTION OF
A BLOCK OFFSET

- 1430

}

ENCRYPTS THE THIRD INTERMEDIATE
RESULT WITH THE SECOND
INTERMEDIATE RESULT TO YIELD AN
INITIALIZATION VECTOR, FOR USE
IN A CRYPTOGRAPHIC OPERATION

— 1440

/
(_FINISH)

US 9,401,898 B2

U.S. Patent Jul. 26, 2016 Sheet 13 of 16 US 9,401,898 B2

FIG. 15

START

ks = PER FILE KEY
OFFSET = BLOCK OFFSET IN FILE

1510

LAST YES

BLOCK IN FILE?
kiy = SHAT (k) |~ 1520
{
ki = TRUNC (kiy) -~ 1530
!
rand = LFSR (OFFSET) L~ 1540
{
Voftset = E(rand k,) L~ 1550
'
OUTPUT IV offset L~ 1560

(_FINISH)=

U.S. Patent

Jul. 26, 2016 Sheet 14 0of 16

FIG. 16

START

CREATES A SECOND SET OF
BACKUP KEYS

~ 1610

ASSOCIATES NEW FILE ENCRYPTION
KEYS WITH THE SECOND SET OF
BACKUP KEYS

— 1620

\

ENCRYPTS THE SECOND SET OF
BACKUP KEYS WITH A NEW
PASSWORD

— 1630

{
CFINSHD)

US 9,401,898 B2

U.S. Patent Jul. 26, 2016 Sheet 15 of 16 US 9,401,898 B2

r______________——- S R
=]
[= =
\\\\
O
B H —

PASSWORD CHANGE

FIG. 17

U.S. Patent Jul. 26, 2016 Sheet 16 of 16 US 9,401,898 B2

FIG. 18

CREATES A CLASS FILE AND A PER

FILE ENCRYPTION KEY 1810

|
ENCRYPTS THE PER FILE KEY WITH
THE DEVICE KEY

— 1820

\

GENERATES AN ASYMMETRIC KEY
PAIR

— 1830

GENERATES A WRAPPING KEY |- 1840

\

ENCRYPTS THE FILE ENCRYPTION
KEY WITH THE WRAPPING KEY

-~ 1850

US 9,401,898 B2

1
SYSTEM AND METHOD FOR WIRELESS
DATA PROTECTION

This is a Divisional of co-pending application Ser. No.
13/204,171 filed Aug. 5, 2011.

BACKGROUND

1. Technical Field

The present disclosure relates to wireless data protection
and more specifically to protecting cryptographic keys relat-
ing to a backup between devices.

2. Introduction

Mobile communication devices, such as phones, PDAs,
laptops, and so forth, are a critical aspect of the day-to-day-
operations for many users. Mobile devices enable communi-
cation in the form of email, text messaging, live chat, voice
and video. These devices often store valuable information,
such as personal data and confidential corporate data. The
amount of information that such devices can store is increas-
ing, as is the importance of the information stored. When a
mobile device is lost or destroyed, all of the information
stored within the device is also lost.

Some computing systems employ backup mechanisms
such that in the event of loss or destruction of the computing
system, at least some data is recoverable. The backup mecha-
nism usually involves copying all or part of a file to a backup
system for storage. Optionally, backup systems store incre-
mental backups for a file previously backed up such that only
data that has changed is sent to the backup system.

Mobile device backup mechanisms exist that regularly and
automatically backup data stored on a mobile device. These
mechanisms can backup data to other devices or computing
systems such as phones, laptop computers, desktop comput-
ers and servers and are sufficient when data on a mobile
device is accessible. However, when the data is inaccessible,
such as when a mobile device is locked, the backup mecha-
nism cannot backup the data because it does not have access
to the user passcode to unlock the device. One method to
overcome this weakness is for a backup mechanism to only
perform backups when the device is unlocked. This method
provides a means for backup, but cannot backup more recent
data stored on the device since the last unlock event. Another
solution is for a user to unlock a mobile device to perform a
backup. However this method requires input from the user.

SUMMARY

Additional features and advantages of the disclosure will
be set forth in the description which follows, and in part will
be obvious from the description, or can be learned by practice
of the herein disclosed principles. The features and advan-
tages of the disclosure can be realized and obtained by means
of the instruments and combinations particularly pointed out
in the appended claims. These and other features of the dis-
closure will become more fully apparent from the following
description and appended claims, or can be learned by the
practice of the principles set forth herein.

Disclosed are systems, methods, and non-transitory com-
puter-readable storage media for protecting cryptographic
keys during a backup between a primary device and a backup
device. A primary device can be any computing device such
as a personal computer, laptop, workstation on a network,
server, cell phone, smart phone, personal digital assistant or
other stationary or mobile devices capable of storing data.
Likewise, a backup device can be any computing device such
as a personal computer, laptop, workstation on a network,

10

15

20

25

30

35

40

45

50

55

60

65

2

server, cell phone, personal digital assistant or other station-
ary or mobile devices capable of storing data. An exemplary
system manages cryptographic keys on a primary device by
encrypting a file with a file key, resulting in an encrypted file.
The system encrypts the file key with a class encryption key,
resulting in an encrypted file key. The class encryption key
protects the file key according to the class of which the file is
amember. After the system encrypts the file key with the class
encryption key, the system encrypts the filekey a second time,
using a public key associated with a set of backup keys,
resulting in a second encrypted file key. The system then
transmits the encrypted file and the second encrypted file key
to a backup device. The first encrypted file key is stored on the
primary device.

An exemplary backup device manages cryptographic keys
by receiving an encrypted file and an encrypted file key at a
backup device from a primary device. The system associates
the encrypted file key with a set of backup keys and encrypts
the set of backup keys with a backup key set key, resulting in
anencrypted set of backup keys. The backup device stores the
encrypted file, the encrypted file key and the set of encrypted
backup keys on the backup device for use in restoration.

In a backup restoration embodiment, an exemplary system
can restore encrypted file data from a backup device to a
primary device. When a primary device such as a phone or
laptop is destroyed or lost, the system can restore the data lost
with the device from the backup device to the primary device
or to a new device. The approaches set forth herein can
assume, when a device is destroyed or lost, that the pass-
words, keys, or other credentials associated with that device
are compromised. The system transmits encrypted file data,
anencrypted file key and a set of encrypted backup keys, from
the backup device to the primary device. The system creates
the set of encrypted backup keys by receiving an encrypted
file and an encrypted file key at a backup device and associ-
ating the encrypted file key with a set of backup keys. Then
the system encrypts the set of backup keys with a backup key
set key, resulting in an encrypted set of backup keys.

During data restoration, at the primary device, the system
receives encrypted file data, an encrypted file key and a set of
encrypted backup keys from the backup device. The system
decrypts the set of encrypted backup keys with a backup key
set key resulting in a set of decrypted backup keys. Then the
system decrypts the encrypted file key with a backup key,
resulting in a decrypted file key. The encrypted file data is
decrypted with the decrypted file key resulting in decrypted
file data. Then the system stores the file data on the primary
device.

In another embodiment, a system managing cryptographic
keys can generate an initialization vector for use in a crypto-
graphic operation. The system performs a cryptographic hash
on a file encryption key and truncates the resulting hash to an
encryption key size. The system then generates an interme-
diate result utilizing a linear feedback shift register with a
block offset as the seed. The intermediate result is encrypted
with the truncated hash of'the file encryption key, resulting in
an initialization vector. The initialization vector is utilized
during encryption and decryption with a block cipher algo-
rithm run in cipher block chaining mode. The initialization
vector initializes the block cipher algorithm.

Additionally, the system can backup encryption keys dur-
ing a password change performed by a user. The system
assumes an old password has been compromised and gener-
ates an additional set of keys for protecting file keys. The
system associates new file encryption keys generated when
new files are created with the additional set of backup keys.
Then the system encrypts the second set of backup keys with

US 9,401,898 B2

3

anew password received from the user. In this way, the system
backs up encryption keys during a password change.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the disclosure can be
obtained, a more particular description of the principles
briefly described above will be rendered by reference to spe-
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only exemplary embodiments of the disclosure and are
not therefore to be considered to be limiting of its scope, the
principles herein are described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates an example system embodiment;

FIG. 2 illustrates asymmetric key cryptography;

FIG. 3 illustrates symmetric key cryptography;

FIG. 4 illustrates cipher-block chaining (CBC) mode
encryption;

FIG. 5 illustrates electronic codebook (ECB) mode
encryption;

FIG. 6 illustrates an exemplary method embodiment for
cryptographic key management on a primary device;

FIG. 7 illustrates example file key protection utilizing
classes;

FIG. 8 illustrates an exemplary method embodiment for
cryptographic key management on a backup device;

FIG. 9 illustrates exemplary cryptographic key manage-
ment on a primary device;

FIG. 10 illustrates exemplary cryptographic key manage-
ment on a backup device;

FIG. 11 illustrates a block diagram of backup key set key
protection;

FIG. 12 illustrates an exemplary method embodiment for
restoring backup data on a backup device;

FIG. 13 illustrates an exemplary method embodiment for
restoring backup data on a primary device;

FIG. 14 illustrates an exemplary method embodiment for
generating an initialization vector;

FIG. 15 illustrates an exemplary logic flow for generating
an initialization vector;

FIG. 16 illustrates an exemplary method embodiment for
backup key management during a password change;

FIG. 17 illustrates an example architecture for backup key
management during a password change; and

FIG. 18 illustrates an exemplary backup key generation
process.

DETAILED DESCRIPTION

Various embodiments of the disclosure are discussed in
detail below. While specific implementations are discussed, it
should be understood that this is done for illustration pur-
poses only. A person skilled in the relevant art will recognize
that other components and configurations may be used with-
out parting from the spirit and scope of the disclosure.

The present disclosure addresses the need in the art for
wireless data protection. A system, method and non-transi-
tory computer-readable media are disclosed which protect
wireless data by managing cryptographic keys on a primary
device and a backup device, restoring file data from a backup
device to a primary device, and generating initialization vec-
tors for use in cryptographic operations and protecting file
keys during a password change. A brief introductory descrip-
tion of a basic general purpose system or computing device in

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 which can be employed to practice the concepts is
disclosed herein. A more detailed description of wireless data
protection will then follow. The disclosure now turns to FIG.
1.

With reference to FIG. 1, an exemplary system 100
includes a general-purpose computing device 100, including
a processing unit (CPU or processor) 120 and a system bus
110 that couples various system components including the
system memory 130 such as read only memory (ROM) 140
and random access memory (RAM) 150 to the processor 120.
The system 100 can include a cache 122 of high speed
memory connected directly with, in close proximity to, or
integrated as part of the processor 120. The system 100 copies
data from the memory 130 and/or the storage device 160 to
the cache 122 for quick access by the processor 120. In this
way, the cache provides a performance boost that avoids
processor 120 delays while waiting for data. These and other
modules can control or be configured to control the processor
120 to perform various actions. Other system memory 130
may be available for use as well. The memory 130 can include
multiple different types of memory with different perfor-
mance characteristics. It can be appreciated that the disclo-
sure may operate on a computing device 100 with more than
one processor 120 or on a group or cluster of computing
devices networked together to provide greater processing
capability. The processor 120 can include any general pur-
pose processor and a hardware module or software module,
such as module 1162, module 2 164, and module 3166 stored
in storage device 160, configured to control the processor 120
as well as a special-purpose processor where software
instructions are incorporated into the actual processor design.
The processor 120 may essentially be a completely self-
contained computing system, containing multiple cores or
processors, a bus, memory controller, cache, etc. A multi-core
processor may be symmetric or asymmetric.

The system bus 110 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. A basic input/output (BIOS) stored in ROM
140 or the like, may provide the basic routine that helps to
transfer information between elements within the computing
device 100, such as during start-up. The computing device
100 further includes storage devices 160 such as a hard disk
drive, a magnetic disk drive, an optical disk drive, tape drive
or the like. The storage device 160 can include software
modules 162, 164, 166 for controlling the processor 120.
Other hardware or software modules are contemplated. The
storage device 160 is connected to the system bus 110 by a
drive interface. The drives and the associated computer read-
able storage media provide nonvolatile storage of computer
readable instructions, data structures, program modules and
other data for the computing device 100. In one aspect, a
hardware module that performs a particular function includes
the software component stored in a non-transitory computer-
readable medium in connection with the necessary hardware
components, such as the processor 120, bus 110, display 170,
and so forth, to carry out the function. The basic components
are known to those of skill in the art and appropriate variations
are contemplated depending on the type of device, such as
whether the device 100 is a small, handheld computing
device, a desktop computer, or a computer server.

Although the exemplary embodiment described herein
employs the hard disk 160, it should be appreciated by those
skilled in the art that other types of computer readable media
which can store data that are accessible by a computer, such as
magnetic cassettes, flash memory cards, digital versatile
disks, cartridges, random access memories (RAMs) 150, read

US 9,401,898 B2

5

only memory (ROM) 140, a cable or wireless signal contain-
ing a bit stream and the like, may also be used in the exem-
plary operating environment. Non-transitory computer-read-
able storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.

To enable user interaction with the computing device 100,
an input device 190 represents any number of input mecha-
nisms, such as a microphone for speech, a touch-sensitive
screen for gesture or graphical input, keyboard, mouse,
motion input, speech and so forth. An output device 170 can
also be one or more of a number of output mechanisms known
to those of skill in the art. In some instances, multimodal
systems enable a user to provide multiple types of input to
communicate with the computing device 100. The commu-
nications interface 180 generally governs and manages the
user input and system output. There is no restriction on oper-
ating on any particular hardware arrangement and therefore
the basic features here may easily be substituted for improved
hardware or firmware arrangements as they are developed.

For clarity of explanation, the illustrative system embodi-
ment is presented as including individual functional blocks
including functional blocks labeled as a “processor” or pro-
cessor 120. The functions these blocks represent may be
provided through the use of either shared or dedicated hard-
ware, including, but not limited to, hardware capable of
executing software and hardware, such as a processor 120,
that is purpose-built to operate as an equivalent to software
executing on a general purpose processor. For example the
functions of one or more processors presented in FIG. 1 may
be provided by a single shared processor or multiple proces-
sors. (Use of the term “processor’” should not be construed to
refer exclusively to hardware capable of executing software.)
Iustrative embodiments may include microprocessor and/or
digital signal processor (DSP) hardware, read-only memory
(ROM) 140 for storing software performing the operations
discussed below, and random access memory (RAM) 150 for
storing results. Very large scale integration (VLSI) hardware
embodiments, as well as custom VLSI circuitry in combina-
tion with a general purpose DSP circuit, may also be pro-
vided.

The logical operations of the various embodiments are
implemented as: (1) a sequence of computer implemented
steps, operations, or procedures running on a programmable
circuit within a general use computer, (2) a sequence of com-
puter implemented steps, operations, or procedures running
on a specific-use programmable circuit, and/or (3) intercon-
nected machine modules or program engines within the pro-
grammable circuits. The system 100 shown in FIG. 1 can
practice all or part of the recited methods, can be a part of the
recited systems, and/or can operate according to instructions
in the recited non-transitory computer-readable storage
media. Such logical operations can be implemented as mod-
ules configured to control the processor 120 to perform par-
ticular functions according to the programming of the mod-
ule. For example, FIG. 1 illustrates three modules Mod1 162,
Mod2 164 and Mod3 166 which are modules configured to
control the processor 120. These modules may be stored on
the storage device 160 and loaded into RAM 150 or memory
130 at runtime or may be stored as would be known in the art
in other computer-readable memory locations.

Cryptography Discussion

Having disclosed some components of a computing sys-
tem, the disclosure now turns to a brief discussion of cryp-
tography. Cryptography encompasses both encryption and
decryption and is used to hide information such that only the

10

15

20

25

30

35

40

45

50

55

60

65

6

intended recipients of a message have access to the informa-
tion. Encryption is the process of changing intelligible infor-
mation in such a way that it appears unintelligible, and
decryption is the reverse process, changing unintelligible
information back into intelligible information. Encryption
and decryption utilize a key that is kept secret to change the
information between forms. Two different types of cryptog-
raphy exist, the traditional symmetric key cryptography and
asymmetric (or public-key) cryptography.

Public-key cryptography is a cryptographic approach that
utilizes asymmetric key algorithms in addition to or in place
of traditional symmetric key algorithms. FIG. 2 illustrates
asymmetric key cryptography and FIG. 3 illustrates symmet-
ric key cryptography. Asymmetric key algorithms differ from
symmetric key algorithms in that different keys are used for
encryption 210 and decryption 220. Symmetric key algo-
rithms use the same key for encryption 310 and decryption
320 and are based on the notion of a shared secretkey between
the sender and the receiver of a message. Because public-key
cryptography utilizes different keys for encryption and
decryption, no secure exchange of a secret key between the
sender and the receiver is needed. Advantages of traditional
symmetric key cryptography include speed, because more
modern asymmetric key algorithms are slower.

In public-key cryptography, a mathematically related key
pair is generated, a private key and a public key. Although the
keys are related, it is impractical to derive one key based on
the other. The private key is kept secret and the public key is
published. A sender encrypts a message with the receiver’s
public key 210 and an encryption algorithm 230, and the
receiver of the message decrypts the message with the private
key 220 and a corresponding encryption (or decryption) algo-
rithm 240. Only the receiver’s private key can decrypt the
message encrypted with the receiver’s public key. For
example, Alice desires to send Bob a message containing
personal information and encrypts the message to protect that
information. Alice utilizes public key cryptography to send
her message because she cannot securely share a crypto-
graphic key with Bob. Alice encrypts the message to Bob with
Bob’s public key and sends the encrypted message to him.
Bob receives the encrypted message and decrypts the mes-
sage with the corresponding private key related to the asym-
metric key pair. In this way, Alice sends Bob an encrypted
message via public key cryptography without exchanging
cryptographic keys.

Having discussed asymmetric and symmetric key cryptog-
raphy, the disclosure now turns to a discussion of block
ciphers. A block cipher is a cryptographic algorithm that
encrypts data block-by-block, in contrast to a stream cipher
which encrypts data bit-by-bit. The block cipher algorithm
splits input data into blocks and operates on each block of
data. Block ciphers can operate in different modes such as
electronic code book (ECB) or cipher block chaining (CBC).

In CBC mode, the output from one block of encryption is
used as input to the next encryption operation. FIG. 4 illus-
trates a cipher run in CBC mode. An initialization vector (IV)
410 is combined with the first block of unencrypted bits b,
420 and the result is encrypted. An initialization vector ran-
domizes unencrypted bits such that if the same block of
plaintext is encrypted more than once with the same key, it
does not appear as the same ciphertext. Encrypting the same
block of plaintext more than once with the same key produces
the same ciphertext. Using an IV 410 prevents this undesired
effect from occurring. The IV 410 is used for the first block of
data because no output from a previous round exists to com-
bine with the first block of unencrypted bits. The encryption
algorithm outputs a block of cipher bits cb, 430 and combines

US 9,401,898 B2

7

the cipher bits with the next block b, 440, which is then
encrypted. The system repeats this process until all blocks of
data have been encrypted. For decryption, the process is
reversed. Each block of cipher bits is decrypted using the
block cipher decryption algorithm, and then combined with
the cipher bits of the previous block to produce plain (unen-
crypted) bits. For the first block, the cipher bits are decrypted
and combined with the IV to produce unencrypted data.

FIG. 5 illustrates a cipher run in ECB mode. In ECB mode,
the input data is split into blocks of data, which are then
encrypted. Unlike CBC mode, there is no combination with
output from previous rounds of encryption. The first block of
unencrypted bits b, 510 is used as input to the encryption
algorithm, and the algorithm outputs cipher bits cb, 520. One
problem with ciphers run in ECB mode is that blocks of
identical plain bits encrypt to blocks of identical cipher bits
because the algorithm uses the same key to encrypt each
block.

Having disclosed some system components and encryption
concepts, the disclosure now turns to the exemplary method
embodiment shown in FIG. 6. For the sake of clarity, each
exemplary method herein is discussed in terms of an exem-
plary system 100 as shown in FIG. 1 configured to practice the
respective method. The steps outlined herein are exemplary
and can be implemented in any combination thereof, includ-
ing combinations that exclude, add, or modify certain steps.

FIG. 6 illustrates wireless data protection by managing
cryptographic keys on a primary device. A primary device can
be any computing device such as a personal computer, laptop,
workstation on a network, server, cell phone, personal digital
assistant or other stationary or mobile devices capable of
storing data. Backup of'a primary device is necessary because
devices are subject to accidental data deletion, loss, destruc-
tion and theft. In the event of data loss, the system can restore
data to the same device, a new device of the same type, and/or
a device of another type. Protecting the cryptographic keys
during a backup event can ensure a secure system. A system
practicing the method encrypts a file with a file key, resulting
in an encrypted file (610). The file can contain text, images,
video, speech, multimedia, etc. and can be in any format such
as PNG, JPG, AVI, and HTML. The concept of a file key can
be extended to cover data not stored in files, such as a memory
segment or set of instructions, however the principles herein
are discussed in terms of files. The file key is an encryption
key and can be randomly generated. The file key can be a
256-bit AES key or a cryptographic key of any other length
for use in any encryption algorithm such as AES, DES, Blow-
fish, etc. After the system encrypts the file with the file key, the
system encrypts the file key with a class encryption key,
resulting in an encrypted file key (620).

After the system encrypts the file key with a class encryp-
tion key, the system encrypts the file key with a public key
associated with a set of backup keys resulting in a second
encrypted file key (630). The public key can belong to an
asymmetric key pair, and the respective private key is stored
on a backup device. Then, the system transmits the encrypted
file and the second encrypted file key to a backup device
(640). A backup device can be any computing device such as
a personal computer, laptop, workstation on a network,
server, cell phone, smartphone, personal digital assistant or
other stationary or mobile devices capable of storing data.
The backup device can store one or more sets of backup keys
for any number of devices. For example, a backup server can
store five sets of backup keys for a cell phone and two sets of
backup keys for a PDA.

The class encryption key is a cryptographic key used to
encrypt keys of a particular protection class. FIG. 7 illustrates

10

20

25

30

35

40

45

50

55

60

65

8

a filesystem that protects file keys according to protection
class. The system assigns each respective file to one of a set of
protection classes 710, and assigns each protection class a
class encryption key. In one aspect, each class encryption key
is unique. The system encrypts each file encryption key with
the corresponding class encryption key 720. For example,
File 1 and File 5 are part of protection Class A, but have
unique file encryption keys. File 1 is encrypted with Key 1,
while File 5 is encrypted with key 5. Both key 1 and 5 are
encrypted with key A. The protection classes allow certain file
behavior and access rights. For example, files labeled read-
able while locked can be protected by a class encryption key,
files labeled readable after first unlock can be protected by a
different class encryption key and all files created by a par-
ticular user can be encrypted by a different class encryption
key. Other file labels include writable while locked and read-
able while unlocked. Files can be classified or labeled in
different ways for different security purposes. For instance,
the classification system can be used to label files requiring
different security. For example, class A files can be files that
require the highest level of security and the class encryption
key that protects the file keys for class A files can be a
particularly strong encryption key, whereas class B files can
be files that require a moderate level of security. The class
encryption key that protects the file keys for class B files can
be a moderately strong encryption key. This tiered approach
to file or credential access through protection classes allows
the system to protect files differently depending on the
desired level of security.

FIG. 8 illustrates an exemplary method embodiment for
wireless data protection on a backup device. The system
manages cryptographic keys on a backup device by receiving
an encrypted file and an encrypted file key at a backup device
from a primary device (810). The system associates the
encrypted file key with a set of backup keys (820) and
encrypts the set of backup keys with a backup key set key,
resulting in an encrypted set of backup keys (830). The
backup device stores the encrypted file, the encrypted file key
and the set of encrypted backup keys on the backup device
(840). The backup device stores the same encrypted file data
as the primary device. However the file key used to encrypt
file data is encrypted differently. The file key stored on the
primary device is encrypted with a class encryption key,
whereas the file key stored on the backup device is encrypted
with a public key related to an asymmetric key pair.

FIG. 9 illustrates wireless data protection utilizing crypto-
graphic key management on a primary device. The system
stores file 1, file 2 and file 3 on a primary device, in this
example, a cell phone 910. Each of the files is encrypted with
a separate corresponding file encryption key, k,, k, and k;
920. Each of the file encryption keys k;, k, and k; are
encrypted with a respective public key, pk,, pk, and pk; 930
associated with a backup key set. The primary device 910
transmits the encrypted file data for each of the file 1, file 2
and file 3, and each of the respective encrypted file keys k;, k,
and k; to the backup device, in this example, a desktop com-
puter. The public keys can be a mirror of the class keys in the
system keybag on the device.

FIG. 10 illustrates wireless data protection on a backup
device. The system stores the corresponding private keys in
one or more sets of backup keys 1010 on the backup device.
For example, the system stores the set of backup keys 1010 on
a desktop computer for safe-keeping. The system then
encrypts the set of backup keys 1010 with a backup key set
key k, 1020. FIG. 11 illustrates an exemplary block diagram
for backup key set key protection. The system can receive a
randomly generated secret from a primary device 1120, the

US 9,401,898 B2

9

backup key set key k, 1110, which the backup device escrows
1130. Key escrow is the process of providing a cryptographic
key to a third party for safe-keeping. The backup device
protects the backup key set key with a user password 1140.
The user password can be the same as a user account pass-
word already in use in the system. In this case, if a user forgets
their password, a service provider can reset the user password
without updating the encrypted set of keys. A service provider
can protect the backup key setkey with the new user password
so the user can access the set of backup keys by providing the
new user password. Additionally, a backup device can
encrypt the backup key set key in any way because it is
escrowing the key. Optionally, the user can choose to protect
the set of backup keys such that the backup key set key is
unrecoverable by a service provider. The user can provide a
separate backup password 1150 that is used to generate the
backup key set key 1160. In this case, if a user forgets their
password, the service provider cannot recover the backup key
set key.

Some implementations offer two levels of protection for
the backup key-bag on the server. For example, the device can
generate a random backup key-bag secret and escrow that
backup key-bag secret with the server. The server protects this
secret with the user’s regular account password, but it is not
encrypted with that password. The server can encrypt the
secret in any manner it chooses as part of escrowing the
secret. Because the account password is recoverable, the
backup key-bag secret is also recoverable. A separate random
backup key-bag secret allows the account password to change
without the need to update the encrypted key-bag.

In another example, the user can specify a separate backup
password. The device generates a backup key-bag secret
based on that password, but does not escrow that secret with
the server. The user re-enters this separate backup password
when restoring, and there is no way to recover this password,
resulting in an unrecoverable password.

FIG. 12 illustrates an exemplary method embodiment for
restoring encrypted file data from a backup device to a pri-
mary device. A primary device can be the same device from
which the backup was performed or a different device. For
example, if a user accidentally deletes data from their phone,
the user can restore the lost data up to the point of the last
backup of the phone. Alternately, if a user’s phone is stolen, a
user can purchase a new phone and restore the lost data up to
the point of the last backup from the user’s original device on
the new phone. A system practicing the method transmits
encrypted file data, an encrypted file key and a set of
encrypted backup keys, from the backup device to the pri-
mary device (1200). The set of encrypted backup keys are
generated by the system or by another device or collection of
devices which receive an encrypted file and an encrypted file
key atabackup device (1210), associate the encrypted file key
with a set of backup keys (1220) and encrypt the set of backup
keys with a backup key set key, resulting in an encrypted set
of backup keys (1230).

FIG. 13 illustrates an exemplary method embodiment for
restoring encrypted file data on a primary device. A system
practicing the method receives encrypted file data, an
encrypted file key and a set of encrypted backup keys, at the
primary device (1310). The system decrypts the set of
encrypted backup keys with a backup key set key, resulting in
a set of backup keys (1320). Once the set of backup keys is
decrypted, the system decrypts the encrypted file key with a
backup key from the set of backup keys, resulting in a file key
(1330). The file key is used to decrypt the encrypted file data
to yield file data (1340) and the system stores the decrypted
file data on the primary device (1350).

25

30

40

45

50

55

10

Initialization Vector Generation

The system can generate an initialization vector for use in
cryptographic operations. An initialization vector (IV) is used
during the CBC mode of encryption to add variation to the
data. FIG. 14 illustrates an exemplary method embodiment
for generating an initialization vector. The system performs a
cryptographic hash of a first encryption key, the file key, to
produce a first intermediate result (1410). The file key is an
encryption key and can be randomly generated. The file key
can be a 256-bit AES key or a cryptographic key of any other
length for use in any encryption algorithm such as AES, DES,
Blowfish, etc. Next, the system truncates the first intermedi-
ate result to produce a second intermediate result (1420) and
generates a third intermediate result utilizing a function of a
block offset (1430). The system truncates the first intermedi-
ate result, a hash of the file encryption key, to an encryption
key size appropriate for a particular cryptographic algorithm
such as 16 bytes, or any other size. A function of a block offset
can be a linear feedback shift register (LFSR) or any other
function utilizing the block offset. The block offset is an index
into the data, indicating a block number. Lastly, the system
encrypts the third intermediate result with the second inter-
mediate result to yield an IV for use in encryption and decryp-
tion (1440). The encryption algorithm used to encrypt the
third intermediate result with the second intermediate result
can be any encryption algorithm such as DES or other suitable
symmetric encryption algorithm.

FIG. 15 illustrates an example logical flow for an iterative
approach for generating an IV for use in cryptographic opera-
tions. When encrypting file data, the system generates an [V
for each block of data in the file. For instance, for a file with
size 2 MB, the system can split the file into 500 blocks of size
4 KB. For each of the 500 blocks, the system generates an [V
for use in encryption and decryption. First, the system checks
if the current block is the last block in the file 1510. If the
current block is the last block, then the system exits the IV
generation routine. If it is not the last block, the system
continues with the IV generation routine. The system gener-
ates the 20-bytek,, by performing a hash utilizing the SHA-1
encryption algorithm and the per file key, k, as input 1520.
The intermediate result k, , is truncated to 16 bytes to produce
the intermediate result k, 1530. The truncation size is an
encryption key size and can be any size required by a specific
encryption algorithm such 8, 12 or 16 bytes or any number of
bytes. At this point, the block offset into the file is used as
input to a LFSR to produce a pseudorandom value rand 1540.

A LFSR is a shift register whose feedback bit is a linear
combination of preceding bits. A shift register is a function
that operates on data bit by bit, outputting one bit at a time.
After the function outputs a bit, all of the bits are shifted one
location in the register and a new bit is computed based on the
preceding bits. The process repeats until the desired number
of bits is output from the function. The register has a finite
number of states, and eventually enters a repeating cycle of
output bits. Because of the repeating nature of LFSRs, they
are not truly random. Software and/or hardware LFSRs can
generate the pseudo-random numbers.

The variable rand is generated by applying a LFSR to the
block offset 1540. After the system generates rand, the system
encrypts the output from the LFSR, rand 1550 with the inter-
mediate result k,, and outputs the IV for the current block
1560. The system returns to checking if the current block is
the last block in the file 1510. If it is the last block, the system
exits after generating all the necessary IVs. If not, the system
continues generating [Vs for the remaining data blocks in the
file.

US 9,401,898 B2

11

The file key is used to generate the IV in such a way that if
an attacker gains access to the IV, he cannot gain access to the
file key. One of the benefits of computing an IV in the dis-
closed manner is that the IV is not tied to the device it is stored
on. Alternate methods of generating an IV exist that tie the IV
to the device it was generated on. These methods are sufficient
when data is restored to the original device, however they are
not sufficient when backed up data is restored to a new device
as is the case when a device is stolen or destroyed. The
disclosed methods provide for data restoration to a different
device.

Changing a User Password with a Backup Process
Enabled

FIG. 16 illustrates an exemplary method embodiment for
changing a user password. When a user changes his pass-
word, the system can assume that the old password has been
compromised and is no longer trusted to protect a set of
backup keys. The change of passwords can be a mandatory
event, such as when a device is lost or destroyed, or can be a
voluntary, user-initiated event. When the user changes his
password and a backup process is enabled, the system creates
a second set of backup keys (1610) on the backup device. The
system associates new file encryption keys with the second
set of backup keys on the backup device (1620). The system
generates new file encryption keys when a new file is created.
After the user password change, any new file keys generated
for newly created files are associated with the second set of
backup keys. The system encrypts the second set of backup
keys ultimately with the new user password (1630). The sys-
tem can generate a random secret and protects the random
secret with the new user password. A backup system can
contain any number of sets of backup keys. The backup
key-bag secret can be derived from the password case instead
of being randomly generated. The file keys can be stored in
the key-sets, encrypted by the keys in the key-sets, and stored
in the file metadata.

FIG. 17 illustrates an exemplary architecture for changing
auser password. Prior to a password change, the backup setof
keys 1710 is protected by a key bk, derived from a user
password. The set of backup keys protected in the first set of
keys is k|, k, and k;. These keys encrypt the file keys for file
1, file 2 and file 3, respectively that are stored on a primary
device, such as a cell phone. After the password change, the
system creates a new set of backup keys on the backup device
and stores newly created backup keys in the new set. For
example, the system creates file 4 and file 5 and stores the
newly generated encryption keys k, and k that protect the file
keys in the new set of backup keys. The file keys for file 4 and
file 5 are encrypted by the encryption keys k, and ks respec-
tively and stored in the corresponding file metadata. The
system derives a new backup key set key bk, 1720 from the
new password to protect the new set of backup keys. The
system can generate any number of backup key sets for any
number of password changes. Each time a user changes his
password, the system creates an additional backup key set on
the backup device and protects the new set with a key derived
from the new user password. In this way, the system protects
the set of backup keys stored on another device during a
password change.

In one embodiment, raw access of encrypted data is
enabled by bypassing the buffer cache. A cache stores data
such that requests for data can be accomplished faster than
fetching data from disk each time it is needed. The buffer
cache is bypassed so that the system can access encrypted
data from the disk without decrypting the data. When access-

15

20

30

40

45

55

12

ing the filesystem in a normal manner, the filesystem access
layer can automatically decrypt the data.

In another embodiment, an efficient method of generating
abackup key based on a per file key stored on a backup device
is disclosed. FIG. 18 illustrates the backup key generation
process. For example, a system can unlock a primary device
and create a new class A file and a random per file encryption
key (1810). The system can encrypt the per file key with the
device key (1820). The system can generate an ephemeral
public/private key pair (1830), which can be used more than
once in a single session instead of generating a new public/
private key pair for each file. The system can generate a
wrapping key to protect the per file key for the backup device
(1840) using a key exchange between an ephemeral key and
the backup keysetkey. Finally, the system encrypts the per file
encryption key with the wrapping key (1850) for storage on
the backup device. For the duration of time the device is
unlocked, the wrapping key and the ephemeral public/private
key pair can be reused. This process avoids the expensive
generation and key exchange to get a new ephemeral key pair
and wrapping key for each file. The disclosed method applies
to file keys in the same class, in the provided example class A,
for the duration of time the device is unlocked without the loss
of security.

Embodiments within the scope of the present disclosure
may also include tangible and/or non-transitory computer-
readable storage media for carrying or having computer-ex-
ecutable instructions or data structures stored thereon. Such
non-transitory computer-readable storage media can be any
available media that can be accessed by a general purpose or
special purpose computer, including the functional design of
any special purpose processor as discussed above. By way of
example, and not limitation, such non-transitory computer-
readable media can include RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to carry or store desired program code means in
the form of computer-executable instructions, data structures,
or processor chip design. When information is transferred or
provided over a network or another communications connec-
tion (either hardwired, wireless, or combination thereof) to a
computer, the computer properly views the connection as a
computer-readable medium. Thus, any such connection is
properly termed a computer-readable medium. Combinations
of the above should also be included within the scope of the
computer-readable media.

Computer-executable instructions include, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Computer-executable instructions also include program
modules that are executed by computers in stand-alone or
network environments. Generally, program modules include
routines, programs, components, data structures, objects, and
the functions inherent in the design of special-purpose pro-
cessors, etc. that perform particular tasks or implement par-
ticular abstract data types. Computer-executable instructions,
associated data structures, and program modules represent
examples of the program code means for executing steps of
the methods disclosed herein. The particular sequence of such
executable instructions or associated data structures repre-
sents examples of corresponding acts for implementing the
functions described in such steps.

Those of skill in the art will appreciate that other embodi-
ments of the disclosure may be practiced in network comput-
ing environments with many types of computer system con-
figurations, including personal computers, hand-held

US 9,401,898 B2

13

devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, and the like. Embodi-
ments may also be practiced in distributed computing envi-
ronments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links,
wireless links, or by a combination thereof) through a com-
munications network. In a distributed computing environ-
ment, program modules may be located in both local and
remote memory storage devices.

The various embodiments described above are provided by
way of illustration only and should not be construed to limit
the scope of the disclosure. For example, the principles herein
apply not only to backing up mobile devices, but to other
devices or computing systems that perform cryptographic
operations. Those skilled in the art will readily recognize
various modifications and changes that may be made to the
principles described herein without following the example
embodiments and applications illustrated and described
herein, and without departing from the spirit and scope of the
disclosure.

We claim:

1. A method comprising:

generating, by a processor on a primary device, an initial-

ization vector for a cryptographic operation, the gener-
ating comprising:
performing a hash of a file key to yield a first interme-
diate result;
truncating the first intermediate result to yield a second
intermediate result;
generating a third intermediate result utilizing a function
of a block offset; and
encrypting the third intermediate result with the second
intermediate result to yield the initialization vector;
encrypting, by the processor, a file using the initialization
vector to yield an encrypted file that is stored on the
primary device, the file being associated with a protec-
tion class defining an access level for the file;
encrypting, by the processor, the file key using a class
encryption key to yield an encrypted file key that is
stored on the primary device, the class encryption key
selected based on the protection class for the file;
encrypting, by the processor, the file key using a public key
associated with a set of backup keys to yield a second
encrypted file key, the set of back keys comprising a
private key corresponding to the public key; and
transmitting the encrypted file and the second encrypted
file key to a backup device.

2. The method of claim 1, wherein the SHA-1 encryption
algorithm is used to perform a hash of the file key.

3. The method of claim 1, wherein the first intermediate
result is truncated to an encryption key size.

4. The method of claim 1, wherein the function of a block
offset is a linear feedback shift register.

5. The method of claim 4, wherein the block offset is a seed
for the linear feedback shift register.

6. The method of claim 1, wherein generating an initializa-
tion vector is performed for each block of data of the file.

7. The method of claim 1, wherein the initialization vector
is used to separately encrypt each block of data of the file.

8. The method of claim 1, wherein the class encryption key
is associated with a set of files, wherein the set of files has at
least one similar attribute.

9. The method of claim 1 further comprising:

receiving, by a processor on the backup device, the

encrypted file and the encrypted file key from the pri-
mary device;

20

25

30

40

45

50

55

60

14

associating, by the processor on the backup device, the
encrypted file key with the set of backup keys;

encrypting, by the processor on the backup device, the set
of backup keys with a backup key set key to yield an
encrypted set of backup keys; and

storing, by the processor on the backup device, the

encrypted file, the encrypted file key and the encrypted
set of backup keys on the backup device.

10. A non-transitory computer-readable storage medium
storing executable instructions that cause a primary device to
perform operations comprising:

generating, by a processor on the primary device, an ini-

tialization vector for a cryptographic operation, the gen-
erating comprising:
performing a hash of a file key to yield a first interme-
diate result;
truncating the first intermediate result to yield a second
intermediate result;
generating a third intermediate result utilizing a function
of a block offset; and
encrypting the third intermediate result with the second
intermediate result to yield the initialization vector;
encrypting, by the processor, a file with the initialization
vector to yield an encrypted file that is stored on the
primary device, the file being associated with a protec-
tion class defining an access level for the file;
encrypting, by the processor, the file key with a class
encryption key to yield a first encrypted file key that is
stored on the primary device, the class encryption key
selected based on the protection class for the file;
encrypting, by the processor, the file key with a public key
associated with a set of backup keys to yield a second
encrypted file key, wherein the set of backup keys com-
prises a private key corresponding to the public key; and
transmitting the encrypted file and the second encrypted
file key to a backup device for storage.

11. The non-transitory computer-readable storage medium
of'claim 10, wherein the SHA-1 encryption algorithm is used
to perform a hash of the file key.

12. The non-transitory computer-readable storage medium
of claim 10, wherein the first intermediate result is truncated
to an encryption key size.

13. The non-transitory computer-readable storage medium
of claim 10, wherein the function of a block offset is a linear
feedback shift register.

14. The non-transitory computer-readable storage medium
of claim 13, wherein the block offset is a seed for the linear
feedback shift register.

15. The non-transitory computer-readable storage medium
of claim 10, wherein generating an initialization vector is
performed for each block of data of the file.

16. The non-transitory computer-readable storage medium
of claim 10, wherein the initialization vector is used to sepa-
rately encrypt each block of data of the file.

17. The non-transitory computer-readable storage medium
of claim 10, wherein the class encryption key is associated
with a set of files, wherein the set of files has at least one
similar attribute.

18. A non-transitory computer-readable storage medium of
claim 10, wherein the executable instructions further cause a
backup device to perform operations comprising:

receiving, by a processor on the backup device, the

encrypted file and the encrypted file key from the pri-
mary device;

associating, by the processor on the backup device, the

encrypted file key with the set of backup keys;

US 9,401,898 B2

15

encrypting, by the processor on the backup device, the set
of backup keys with a backup key set key to yield an
encrypted set of backup keys; and
storing, by the processor on the backup device, the
encrypted file, the encrypted file key and the encrypted
set of backup keys on the backup device.
19. A system comprising:
a processor on a primary device; and
a memory on the primary device coupled to the processor
on the primary device, the memory on the primary
device storing executable instructions that cause the pro-
cessor on the primary device to perform operations com-
prising:
generating an initialization vector for a cryptographic
operation, the generating comprising:
performing a hash of a file key to yield a first inter-
mediate result;
truncating the first intermediate result to yield a sec-
ond intermediate result;
generating a third intermediate result utilizing a func-
tion of a block offset; and
encrypting the third intermediate result with the sec-
ond intermediate result to yield the initialization
vector;
encrypting a file with the initialization vector to yield an
encrypted file that is stored on the primary device, the
file being associated with a protection class defining
an access level for the file;
encrypting the file key with a class encryption key to
yield a first encrypted file key that is stored on the
primary device, the class encryption key selected
based on the protection class for the file;
encrypting the file key with a public key associated with
a set of backup keys to yield a second encrypted file

5

10

15

20

25

30

16

key, wherein the set of backup keys comprises a pri-
vate key corresponding to the public key; and
transmitting the encrypted file and the second encrypted
file key to a backup device for storage.
20. The system of claim 19, wherein the SHA-1 encryption
algorithm is used to perform a hash of the file key.
21. The system of claim 19, wherein the first intermediate
result is truncated to an encryption key size.
22. The system of claim 19, wherein the function of a block
offset is a linear feedback shift register.
23. The system of claim 22, wherein the block offset is a
seed for the linear feedback shift register.
24. The system of claim 19, wherein generating an initial-
ization vector is performed for each block of data of the file.
25. The system of claim 19, wherein the initialization vec-
tor is used to separately encrypt each block of data of the file.
26. The system of claim 19, wherein the class encryption
key is associated with a set of files, wherein the set of files has
at least one similar attribute.
27. The system of claim 19 further comprising;
a processor on the backup device; and
amemory onthe backup device coupled to the processor on
the backup device, the memory on the backup device
storing executable instructions that cause the processor
on the backup device to perform operations comprising:
receiving the encrypted file and the encrypted file key
from the primary device;
associating the encrypted file key with the set of backup
keys;
encrypting the set of backup keys with a backup key set
key to yield an encrypted set of backup keys; and
storing the encrypted file, the encrypted file key and the
encrypted set of backup keys on the backup device.

#* #* #* #* #*

